Muandet, K., Sriperumbudur, B., Fukumizu, K., Gretton, A., Schoelkopf, B. (2016). Kernel Mean Shrinkage Estimators.Journal of Machine Learning Research, 17 1-41.
Grünewälder, S., Gretton, A., Shawe-Taylor, J. (2013). Smooth operators.30th International Conference on Machine Learning, ICML 2013, (PART 3), 2221-2229.
Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2012). A Kernel Two-Sample Test.JMLR, 13 723-773.
Grünewälder, S., Lever, G., Baldassarre, L., Patterson, S., Gretton, A., Pontil, M. (2012). Conditional mean embeddings as regressors.Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2 1823-1830.
Gretton, A., Fukumizu, K., Teo, C.H., Song, L., Schoelkopf, B., Smola, A. (2008). A Kernel Statistical Test of Independence. In Platt, J.C., Koller, D., Singer, Y., Roweis, S. (Eds.), Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press.
Song, L., Smola, A., Borgwardt, K., Gretton, A. (2008). Colored Maximum Variance Unfolding. In Platt, J.C., Koller, D., Singer, Y., Roweis, S. (Eds.), Advances in Neural Information Processing Systems 20. Cambridge, MA: MIT Press.
Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2007). A Kernel Approach to Comparing Distributions. In Holte, R., Howe, A. (Eds.), Proceedings of the 22nd AAAI Conference on Artificial Intelligence. (p. 1637-1641). AAAI Press.
Gretton, A., Borgwardt, K., Rasch, M., Schoelkopf, B., Smola, A. (2007). A Kernel Method for the Two-Sample-Problem. In Schoelkopf, B., Platt, J., Hoffman, T. (Eds.), Advances in Neural Information Processing Systems 19. (pp. 513-520). Cambridge, MA: MIT Press.
Huang, J., Smola, A., Gretton, A., Borgwardt, K., Schoelkopf, B. (2007). Correcting Sample Selection Bias by Unlabeled Data. In Schoelkopf, B., Platt, J., Hoffman, T. (Eds.), Advances in Neural Information Processing Systems 19. (pp. 601-608). Cambridge, MA: MIT Press.
Jitkrittum, W., Szabo, Z., Chwialkowski, K., Gretton, A. (1900). Distinguishing distributions with interpretable features. Presented at: International Conference on Machine Learning (ICML): Data-Efficient Machine Learning workshop New York, USA.
Jitkrittum, W., Gretton, A.L., Heess, N., Eslami, S.M.A., Lakshminarayanan, B., Sejdinovic, D., Szabó, Z. (1900). Kernel-Based Just-In-Time Learning For Passing Expectation Propagation Messages. Presented at: International Conference on Machine Learning (ICML) - Large-Scale Kernel Learning: Challenges and New Opportunities workshop Lille, France.